Binaural-level functions in ferret auditory cortex: evidence for a continuous distribution of response properties.
نویسندگان
چکیده
Many previous studies have subdivided auditory neurons into a number of physiological classes according to various criteria applied to their binaural response properties. However, it is often unclear whether such classifications represent discrete classes of neurons or whether they merely reflect a potentially convenient but ultimately arbitrary partitioning of a continuous underlying distribution of response properties. In this study we recorded the binaural response properties of 310 units in the auditory cortex of anesthetized ferrets, using an extensive range of interaural level differences (ILDs) and average binaural levels (ABLs). Most recordings were from primary auditory fields on the middle ectosylvian gyrus and from neurons with characteristic frequencies >5 kHz. We used simple multivariate statistics to quantify a fundamental coding feature: the shapes of the binaural response functions. The shapes of all 310 binaural response surfaces were represented as points in a five-dimensional principal component space. This space captured the underlying shape of all the binaural response surfaces. The distribution of binaural level functions was not homogeneous because some shapes were more common than others. Despite this, clustering validation techniques revealed no evidence for the existence of discrete, or partially overlapping, clusters that could serve as a basis for an objective classification of binaural-level functions. We also examined the gradients of the response functions for the population of units; these gradients were greatest near the midline, which is consistent with free-field data showing that cortical neurons are most sensitive to changes in stimulus location in this region of space.
منابع مشابه
Encoding of virtual acoustic space stimuli by neurons in ferret primary auditory cortex.
Recent studies from our laboratory have indicated that the spatial response fields (SRFs) of neurons in the ferret primary auditory cortex (A1) with best frequencies > or =4 kHz may arise from a largely linear processing of binaural level and spectral localization cues. Here we extend this analysis to investigate how well the linear model can predict the SRFs of neurons with different binaural ...
متن کاملPhysiological and behavioral studies of spatial coding in the auditory cortex.
Despite extensive subcortical processing, the auditory cortex is believed to be essential for normal sound localization. However, we still have a poor understanding of how auditory spatial information is encoded in the cortex and of the relative contribution of different cortical areas to spatial hearing. We investigated the behavioral consequences of inactivating ferret primary auditory cortex...
متن کاملResponses of auditory cortex to complex stimuli: functional organization revealed using intrinsic optical signals.
We used optical imaging of intrinsic signals to study the large-scale organization of ferret auditory cortex in response to complex sounds. Cortical responses were collected during continuous stimulation by sequences of sounds with varying frequency, period, or interaural level differences. We used a set of stimuli that differ in spectral structure, but have the same periodicity and therefore e...
متن کاملBinaural sensitivity changes between cortical on and off responses.
Neurons exhibiting on and off responses with different frequency tuning have previously been described in the primary auditory cortex (A1) of anesthetized and awake animals, but it is unknown whether other tuning properties, including sensitivity to binaural localization cues, also differ between on and off responses. We measured the sensitivity of A1 neurons in anesthetized ferrets to 1) inter...
متن کاملSelective deficits in human audition: evidence from lesion studies
The human auditory cortex is the gateway to the most powerful and complex communication systems and yet relatively little is known about its functional organization as compared to the visual system. Several lines of evidence, predominantly from recent studies, indicate that sound recognition and sound localization are processed in two at least partially independent networks. Evidence from human...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 95 6 شماره
صفحات -
تاریخ انتشار 2006